Extended And Unified Local Convergence For Newton-Kantorovich Method Under w− Conditions With Applications
نویسنده
چکیده
The goal of this paper is to present a local convergence analysis of Newton’s method for approximating a locally unique solution of an equation in a Banach space setting. Using the gauge function theory and our new idea of restricted convergence regions we present an extended and unified convergence theory. Key–Words: Newton’s method, Banach space, semilocal convergence, gauge function, convergence region, Newton-Kantorovich theorem.
منابع مشابه
Convergence behavior of Gauss-Newton's method and extensions of the Smale point estimate theory
The notions of Lipschitz conditions with L average are introduced to the study of convergence analysis of Gauss-Newton’s method for singular systems of equations. Unified convergence criteria ensuring the convergence of Gauss-Newton’s method for one kind of singular systems of equations with constant rank derivatives are established and unified estimates of radii of convergence balls are also o...
متن کاملOn Extended Convergence Domains for the Newton-kantorovich Method
We present results on extended convergence domains and their applications for the Newton-Kantorovich method (NKM), using the same information as in previous papers. Numerical examples are provided to emphasize that our results can be applied to solve nonlinear equations using (NKM), in contrast with earlier results which are not applicable in these cases. MSC 2010. 65J15, 65G99, 47H99, 49M15.
متن کاملExtensions of the Newton-Kantorovich Theorem to Variational Inequality Problems
The Newton-Kantorovich theorem is extended to validate the convergence of the NewtonJosephy method for solving variational inequality problem. All the convergence conditions can be tested in digital computer. Moreover, the validation delivers automatically the existence domain of the solution and the error estimate. The ideas are illustrated by numerical results.
متن کاملConvergence of Newton’s Method for Systems of Equations with Constant Rank Derivatives
The convergence properties of Newton’s method for systems of equations with constant rank derivatives are studied under the hypothesis that the derivatives satisfy some weak Lipschitz conditions. The unified convergence results, which include Kantorovich type theorems and Smale’s point estimate theorems as special cases, are obtained. Mathematics subject classification: 49M15, 65F20, 65H10.
متن کاملNew and Generalized Convergence Conditions for the Newton-kantorovich Method
We present new semilocal convergence theorems for Newton methods in a Banach space. Using earlier general conditions we find more precise error estimates on the distances involved using the majorant principle. Moreover we provide a better information on the location of the solution. In the special case of Newton’s method under Lipschitz conditions we show that the famous Newton–Kantorovich hypo...
متن کامل